INTERCHANGE EQUILIBRIUM BETWEEN ACETYLENE AND HEAVY WATER.

By Kozo HIROTA and Go OKAMOTO.

Received March 16th, 1936. Published April 28th, 1936.

The interchange equilibrium of the reaction,

$$C_2H_2 + HDO_{liq} = C_2HD + H_2O_{liq}$$
 (1),

has recently been studied experimentally by Gillespie and Reyerson⁽¹⁾⁽²⁾. We calculated the equilibrium constant K_1 from existing spectroscopic data and found an excellent agreement with the experimental value.

 $K_{\rm g}$ of the gas reaction, $C_2H_2 + HDO_{\rm gas} = C_2HD + H_2O_{\rm gas}$, can be expressed in term of molecular constants. Assuming that the rotational degree of freedom is fully excited and, according to $Urey^{(3)}$, that the interatomic potential energy is not affected by isotopic replacement, we have

$$\log K_{\rm g} = -\frac{\Sigma \varepsilon_{\rm o}}{kT} + \frac{3}{2} \log \frac{M_{\rm C_2HD} M_{\rm H_2O}}{M_{\rm C_2H_2} M_{\rm HDO}} + \log \frac{I_{\rm C_2HD}}{I_{\rm C_2H_2}} \left(\frac{I_{\rm H_2O}}{I_{\rm HDO}}\right)^{\frac{3}{2}} + \log \frac{Q_{\rm C_2HD} \cdot Q_{\rm H_2O}}{Q_{\rm C_2H_2} \cdot Q_{\rm HDO}} \tag{2},$$
where
$$\Sigma \varepsilon_{\rm o} = \sum_{\rm C_2HD}^{3n-5} \frac{h_{\nu_{\rm o}}}{2} + \sum_{\rm H_2O}^{3n-6} \frac{h_{\nu_{\rm o}}}{2} - \sum_{\rm C_2H_2}^{3n-5} \frac{h_{\nu_{\rm o}}}{2} - \sum_{\rm HDO}^{3n-6} \frac{h_{\nu_{\rm o}}}{2} ,$$

$$\frac{1}{2} \sum_{\rm v_o}^{3n-5(6)} = \frac{1}{2} \sum_{\rm v_o}^{3n-5(6)} \frac{1}{2} \sum_{\rm v_o}^{3n-5(6)} \frac{3n-5(6)}{2} x_{ij} ,$$

 u_e is harmonic frequency, x_{ij} anharmonicity constant, $I = \sqrt[3]{I_{\rm A}I_{\rm B}I_{\rm C}}$ mean moment of inertia, $Q = \stackrel{3n-5}{II}(1-e^{-\frac{h\nu_0}{kT}})^{-1}$ for acetylene, and $Q = \stackrel{3n-6}{II}(1-e^{-\frac{h\nu_0}{kT}})^{-1}$ for water molecule. The present calculation was based on the following spectroscopic data:

⁽¹⁾ Reyerson and Gillespie, J. Am. Chem. Soc., 57 (1935), 2250.

⁽²⁾ Reverson and Gillespie, Ibid., 58 (1936), 282.

⁽³⁾ Urey and Rittenberg, J. Chem. Physics, 1 (1933), 137. Urey and Greiff, J. Am. Chem. Soc., 57 (1935), 321.

	$\mathbf{C_2H_2}$	$\mathrm{C_2HD}$	H ₂ O	HDO
Moment of inertia	23.50×10 ⁻⁴⁰⁽⁴⁾	27.90×10 ⁻⁴⁰⁽⁸⁾	I _A 1.03×10 ⁻⁴⁰⁽⁷⁾ I _B 2.07 I _C 3.10	1.18×10 ⁻⁴⁰⁽⁷⁾ 3.74 4.92
Fundamental frequency (cm1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3350(5) 1860 2550 541(6)* 679*	v ₁ 3654(7) v ₂ 3756 v ₅ 1596	2720 ⁽⁷⁾ 3750 1403

^{*} Twofold degenerated.

Anharmonicity constants x_{ij} were taken from Mecke's analysis⁽⁹⁾ for H_2O and from Herzberg's for $C_2H_2^{(4)}$ (10); x_{ij} for HDO and C_2HD were computed by assuming the proportionality, $x_{ij} \propto \nu_i \nu_j$; $\frac{1}{2} \Sigma \nu_e$, $\frac{1}{4} \Sigma x_{ij}$, and $\frac{1}{2} \Sigma \nu_0$ calculated from the original data are given below:

	$\mathrm{C_2H_2}$	C_2HD	H ₂ O	HDO
$\frac{1}{2}\Sigma^{v_{e}}$	5773 cm1	5195 cm1	4603 cm1	4008 cm1
$\frac{1}{4}\sum_{ij}x_{ij}$	52	45	35	26
$\frac{1}{2}\Sigma^{v_0}$	5825	5240	4638	4034

We obtain therefore from expression (1)

$$\log K_{\rm g} = -\frac{54}{0.434RT} - 0.524 + \frac{1}{0.434} \log \frac{Q_{\rm C_2HD} \cdot Q_{\rm H_2O}}{Q_{\rm C_0H_2} \cdot Q_{\rm HDO}}$$
(3)

with $K_g = 0.62$ at 25°C.

⁽⁴⁾ Herzberg and Spinks, Z. Physik, 91 (1934), 386.

⁽⁵⁾ Sutherland, Nature, 134 (1934), 775.

⁽⁶⁾ Randall and Sleator, Phys. Rev., 45 (1934), 124.

⁽⁷⁾ Barker and Sleator, J. Chem. Physics, 3 (1935), 660.

⁽⁸⁾ Herzberg, Patat and Spinks, Nature, 133 (1934), 951.

⁽⁹⁾ Macke, Z. Phys., 81 (1933), 445, 465.

⁽¹⁰⁾ Herzberg and Funke, Phys. Rev., 49 (1936), 100.

The last term of the expression gives a small correction arising from the small deformation frequencies of acetylene molecule.

 K_1 for the equilibrium (1) can readily be calculated by combining (3) and the constant $K_{\rm w}$ of the equilibrium,

$$H_2O_{gas} + HDO_{lig} = H_2O_{lig} + HDO_{gas}$$
,

determined by one of the authors(11). We have finally,

$$K_1 = K_g K_w = 0.59$$
 at 25°C., where $K_w = 0.96$ at 25°C.

The agreement with the recent experimental data $K_1 = 0.599^{(2)}$ at 25°C. is satisfactory.

One could also use other sets of frequencies due to different authors as given below:

Fundamental freq.	Harmonic freq.(13)			
C ₂ H ₂ (12)	H ₂ O	HDO		
v _{s2} 3370	ν ₁ 3895	3844		
v ₈₁ 1975	v ₂ 3803	2848		
v_a 3277	νδ 1635	1424		
δ _a 729 *				
δ ₈ 600 *				

Twofold degenerated.

The result is nearly unaltered by replacing ν_0 's of water with those due to Clusius and Bartholomé ($K_{1\cdot25^{\circ}\text{C.}} = 0.62$) whereas one obtains $K_{1\cdot25^{\circ}\text{C.}} = 0.66$, if Mecke's value for acetylene were used instead of Herzberg's. Assignment of δ_s has been frequently under discussion⁽¹⁴⁾, the discrepancy of the frequency between these authors being the chief cause of the above difference in theoretical values. Our result is in favour of the assignment $\delta_s = 618 \, \mathrm{cm}^{-1}$ rather than $\delta_s = 600 \, \text{cm}.^{-1}$ in agreement with Morino's theoretical results.

Chemical Department, Faculty of Science, Hokkaido Imperial University, Sapporo, Japan.

⁽¹¹⁾ Horiuti and Okamoto, this Bulletin, 10 (1935), 282.

⁽¹²⁾ Mecke, Z. physik. Chem., B, 17 (1932), 1.
(13) Farkas and Farkas. Trans. Faraday Soc., 30 (1934), 1071. Clusius and Bartholomé, Z. Elektrochem., 40 (1934), 529. Teller, Det Kg. Danske Vidensk. Selskab, (1934).
(14) Morino, Sci. Pap. Inst. Phys. Chem. Research, Japan, 26 (1934), 1; see also Morino and Mizushima, Physik. Z., 18 (1935), 600.